Statistics

Summer 2023

Lecture 9

Feb 19-8:47 AM

class QZ 9
 Answers in reduced fraction

4 Females, 6 males, Select 3 people.

> No females

1) $P($ at least 1 Female) $=1-P($ All males $)$

$$
=1-\frac{6}{10} \cdot \frac{5}{9} \cdot \frac{4}{8}=\frac{5}{6}
$$

2) P (at least 1 male) $=1-P(A l l$ Senates $)$

$$
=1-\frac{4}{10} \cdot \frac{3}{9} \cdot \frac{2}{8}=\frac{29}{30} \mathrm{~J}
$$

$P(1 f \xi 2 m)=\frac{4^{c_{1}} \cdot{ }_{6} c_{2}}{10 c_{3}}=\frac{60}{120}=\frac{1}{2}$
$P\left(2 F \varepsilon_{1}^{1} I m\right)=\frac{4 C_{2} \cdot{ }_{6} C_{1}}{10 C_{3}}=\frac{36}{120}=\frac{3}{10}$

Consider the chart below

x	$P(x)$
1	.05
2	.1
3	.15
4	.2
5	.25
6	.25

1) find $P(x=6)$
$=1-[.05+.1+.15+.2+.25]=.25$
2) find $P(x \geq 2)$
$=1-P(x=7)=1-.05=95$
3) find $P(x=2$ or $x=4)$

$$
.1+.2=.3
$$

4) Draw Prob. dist. histogram

$x \rightarrow L 1, P(x) \rightarrow L 2$

use 1-Var Stats with $L 1 \dot{\varepsilon}, 2$

$$
\mu=\bar{x}=4.25
$$

find σ^{2} in reduced fraction $\sigma=\sigma_{x}=1.479$

VARS 5: Statistics 4:- 0
(x^{2} Math 1: frack Enter

$$
\begin{array}{ll}
n=1 & \text { Total Prob. } \\
\sigma^{2}=\frac{35}{16}
\end{array}
$$

Jun 27-7:39 AM

Round $\mu \dot{\varepsilon}, \sigma$ to whole numbers
68% Range $\rightarrow \mu \pm \sigma \Rightarrow 3$ to 5
95\%. Range $\rightarrow \mu \pm 2 \sigma \Rightarrow 2$ to 6 usual Range

$$
99.7 \% \text { Range } \rightarrow \mu \pm 30 \Rightarrow 1 \text { to } 7
$$

Expected Value (μ)
25 students, each paid \$10 to buy a ticket. one ticket drawn, winner gets a calk. worth $\$ 100$ what is expected Value per ticket Sold?

Net gain	$P($ Net gain $)$
$10-100$	$1 / 25$
$10-0$	$24 / 25$

Net gain $\rightarrow L 1$ Use 1 -Va rstats with $P($ Net gain $) \rightarrow L 2 \quad L 1 \varepsilon L 2$

Expected Valve per Ticket

$$
\mu=\bar{x}=6
$$

The house (fundraisers) make $\$ 6 /$ TNT.

You buy insurance for your luggage for $\$ 100$.
Any damages, Airline pays you $\$ 1000$.
Prob. of any damages is $.5 \% . .005$
find expected value per policy Sold by the airline.

Net gain	$P($ Net gain)
$100-1000$.005
$100-0$	$1-.005$

Net gain \rightarrow Use 1 -Var Stats
$P($ Net gain $) \rightarrow$ with LI $\dot{\varepsilon}, L 2$

$$
E_{0} V_{0}=\mu=\bar{x}=\$ 95
$$

Airline makes $\$ 95$ per policy Sold.

A piggy bank has 3 Quarters and 7 Nickels. Take 2 Coins, No replace ment

$$
\begin{aligned}
& \text { No } \\
& N Q \\
& \text { iN } \\
& Q Q \\
& \text { 104 } 304504 \\
& P(10 \phi)=\frac{7^{C_{2}} \cdot{ }_{3} C_{0}}{10^{C_{2}}}=\frac{21}{45}=\frac{7}{15} \\
& P(304)=\frac{7^{C_{1}} \cdot 3^{C_{1}}}{10^{C_{2}}}=\frac{21}{45}=\frac{7}{15} \\
& P(504)=\frac{7 C_{0} \cdot{ }_{3} C_{2}}{{ }_{10} C_{2}}=\frac{3}{45}=\frac{1}{15}
\end{aligned}
$$

Total	$P($ Total) $)$
104	$7 / 15$
304	$7 / 15$
504	$1 / 15$

Total $\rightarrow L 1, P($ Total $) \rightarrow L C$
Use 1-Var stats with LIELLC to find

Usual Range $\rightarrow \mu \pm 2 \sigma$

$$
95 / \text { Range } \Rightarrow-2 \text { to } 46
$$ SG 15

Binomial Prob. Dist:

1) n independent events
2) Each event has only two outcomes $P($ success $)=P \quad P($ failure $)=9$

$$
p+q=1
$$

$p \in q$ remain unchanged for all n events
3) x is \# of Successes $n-x$ is \# of failures

$$
\begin{aligned}
& p(x)={ }_{n} C_{x} \cdot p^{x} \cdot q^{n-x} \\
& x=0,1,2,3, \ldots, n
\end{aligned}
$$

You flip a Coin 10 times.

$$
P(\text { Tails })=.6
$$

$$
\begin{aligned}
& n=10 \\
& P=.6 \\
& q=.4-q=1-p
\end{aligned}
$$

$P(\underbrace{\text { exactly }}_{x=5} 5$ Tails $)$

$$
\begin{aligned}
& \begin{aligned}
P(x=5)=10_{5} \cdot(.6)^{5} \cdot(.4)^{10-5} & =252 \cdot(.6)^{5} \cdot(.4)^{5} \\
P(x)=n C_{x} \cdot P^{x} \cdot q^{n-x} & =.201 \\
P(\underbrace{\text { exactly } 7 \text { tails })}_{x=7} & =P(x=7) \\
& =10_{7} C_{7} \cdot(.6)^{7} \cdot(.4)^{3} \\
& =120 \cdot(.6)^{7} \cdot(.4)^{3}=.215
\end{aligned}
\end{aligned}
$$

We randomly Select 20 newborn babies.

Jun 27-8:57 AM

You are taking a multiple-choice exam with 25 questions.

$$
n=25
$$

Each question has 5 choices, and only one correct choice.

$$
P=\frac{1}{5}=\cdot 2 \quad q=\frac{4}{5}=.8
$$

You are making random guesses.

$$
\begin{aligned}
P(\text { guess } 8 \text { correct answers }) & =P(x=8) \\
& =\operatorname{binompdf}(25,028) \\
& =.062
\end{aligned}
$$

$P($ guess 10 Correct answers):

$$
P(x=10)=\text { binompdf }(25, .2,10)=.012
$$

$P($ guess $\underbrace{\text { at most } 8} 8$ correct answers)

$$
P(x<8)=\operatorname{binom} \operatorname{cdf}(25, \cdot 2,8)
$$

$$
=.953
$$

$P($ guess $\underbrace{\text { at most } 10}_{x \leq 10}$ correct answers)

$$
\begin{array}{r}
=P(x \leq 10)=\text { binomcd } f(25, .2,10) \\
=.994
\end{array}
$$

Jun 27-9:10 AM

You flip a fair coin 100 times, $\begin{aligned} & n=100 \\ & p=.5\end{aligned}$
Success is to land tails. $\quad q=.5$

1) $P($ land exactly 60 tails)

$$
\begin{array}{r}
=P(x=60)=\text { binompd } f(100, .5,60) \\
=.011
\end{array}
$$

2) $P($ land fever than 60 toils)
ups says prob. That any item arrives on time is .85 .

$$
\begin{aligned}
& p=.85 \\
& q=.15
\end{aligned}
$$

we randomly Select 60 items. $n=60$ Success is to arrive on time or Sooner.

$$
\begin{aligned}
P(\text { exactly } 55 \text { are on time }) & =P(x=55) \\
& =\text { binompd }(60, .85,55) \\
& =.054
\end{aligned}
$$

$P($ at most 55 arrive on time $)=P(x \leq 55)$

$$
\begin{aligned}
& =\operatorname{binomcdf}(60, .85,55) \\
& =.958
\end{aligned}
$$

P (at least 55 arrive on time $)=P(x \geq 55)$ we don't
we Want

$$
\begin{aligned}
& =1-P(x \leq 54) \\
& =1 \text {-binomcdf }(60, .85,54) \\
& =.097
\end{aligned}
$$

Jun 27-9:24 AM
$P\left(\right.$ between $50 \dot{\sum} 55$, infusive, arrive on time) $P(50 \leq x \leq 55)=P(x \leq 55)-P(x \leq 49)$
$4950 \quad 55$
$=\operatorname{binom} C d f(60, .85,55)-$ binomedf $(60, .85,49)$

$$
=.674
$$

Jun 27-10:22 AM

You are taking a True/false exam with 400 questions. You are making random guesses.

1) $n=400$
a) $P=\frac{1}{2}=.5$
2) $q=\frac{1}{2}=.5$
3) $\mu=n p$
4) $\sigma^{2}=n p q$
5) $\begin{aligned} \sigma & =\sqrt{\sigma^{2}} \\ & =\sqrt{100} \\ & =10\end{aligned}$
$=400(.5)$
$=2000$
$=400(5)(.5)$
6) 68% Range $\rightarrow \mu \pm \sigma \rightarrow 190$ to 210
7) 95% Range $\rightarrow \mu \pm 2 \sigma \rightarrow 180$ to 220 Usual $\begin{aligned} & \text { Rage }\end{aligned}$

8) $P($ guess between 170 and 230 correctans, inclusive)
$=P(170 \leq x \leq 230)=\operatorname{binomcdf}(400, .5,230)$
Reduce by 1 - binomcdf($400,5,169$)
.998
99.8%

Prob. of anyone in LA is a Laker fan is .75 . 80 people were randomly selected.

1) $n=80$
2) $p=.75$
3) $q=.25$
4) $\mu=n p$
5) $\sigma^{2}=n p q$
6) $\sigma=\sqrt{\sigma^{2}}$

$$
=60
$$

$$
=15
$$

$$
=\sqrt{15} \approx 4
$$

7) Usual Range $\mu \pm 20 \Rightarrow 52$ to 68 Range Let x be $\#$ of Lakers fan
8) $P(52 \leq x \leq 68)=\operatorname{binomcd} f(80, .75,68)-\operatorname{binomcdf}(80, .75,5)$

$$
\begin{aligned}
& \text { 9) } P \text { (at least } \frac{\frac{3}{8} \cdot 80}{\left.\frac{3}{8} \text { of them are lakersfan }\right)} \\
& =P(x \geq 30)=1 \text { - binomcdf }(80, .75,29) \approx 1
\end{aligned}
$$

10) P (at most $\left[\frac{5}{8}\right.$ of them are lakers fan)

$$
\begin{gathered}
\frac{5}{8} \cdot 80=50 \\
=P(x \leq 50)=\text { binomcdf }(80, .75,50)=.009
\end{gathered}
$$

class QZ 11
use the chart below 1) Find $P(x=9)$

x	$P(x)$
1	.7
3	.2
5	.3
7	.35
9	.05

$$
=1-[.1+.2+.3+.35]=005
$$

2) Find $P(x>1)$

$$
=1-P(x=1)=1-.1=.9
$$

3) Draw Prob. dist. histogram

